Deutsches Krebsforschungszentrum 
German Cancer Resarch CenterLOX-DB - LipOXygenases DataBase
Lipoxygenases...
What are Lipoxygenases?
Lipoxygenases and
cancer research
Database...
Search
Display all entries
Alignments
Sequence Comparison
Blast Search
Search Literature
Search Literature (adv.)
Misc...
Image Gallery
Links
Forum
Contact
Guestbook
Home

LOX-DB - Literature


The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase.

Yu Z, Schneider C, Boeglin WE, Marnett LJ, Brash AR

Proc Natl Acad Sci U S A 100: 9162-9167 (2003)

Abstract:

Lipoxygenase (LOX) enzymes form fatty acid hydroperoxides used in membrane remodeling and cell signaling. Mammalian epidermal LOX type 3 (eLOX3) is distinctive in totally lacking this typical oxygenase activity. Surprisingly, genetic evidence has linked mutations in eLOX3 or a colocalizing enzyme, 12R-LOX, to disruption of the normal permeability barrier of the skin [Jobard, F., Lefevre, C., Karaduman, A., Blanchet-Bardon, C., Emre, S., Weissenbach, J., Ozguc, M., Lathrop, M., Prud'homme, J. F. & Fischer, J. (2002) Hum. Mol. Genet. 11, 107-113]. Herein we identify a logical link of the biochemistry to the genetics. eLOX3 functions as a hydroperoxide isomerase (epoxyalcohol synthase) by using the product of 12R-LOX as the preferred substrate. 12R-Hydroperoxyeicosatetraenoic acid (12R-HPETE) is converted to 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid, one of the isomers of hepoxilin A3, and to 12-ketoeicosatetraenoic acid in a 2:1 ratio. Other hydroperoxides, including 8R-HPETE, 12S-HPETE, and 15S-HPETE, as well as the 13S- and 13R-hydroperoxides of linoleic acid are converted less efficiently. Mass spectrometric analysis of the epoxyalcohol formed from [18O]15S-HPETE showed that both hydroperoxy oxygens are retained in the product. We propose that the ferrous form of eLOX3 initiates a redox cycle, unprecedented among LOX in being autocatalytic, in which the hydroperoxy substrate is isomerized to the epoxyalcohol or keto product. Our results provide strong biochemical evidence for a functional linkage of 12R-LOX and eLOX3 and clues into skin biochemistry and the etiology of ichthyosiform diseases in humans.

LOX-DB entries related to this article: h-e-lox-3