Deutsches Krebsforschungszentrum 
German Cancer Resarch CenterLOX-DB - LipOXygenases DataBase
Lipoxygenases...
What are Lipoxygenases?
Lipoxygenases and
cancer research
Database...
Search
Display all entries
Alignments
Sequence Comparison
Blast Search
Search Literature
Search Literature (adv.)
Misc...
Image Gallery
Links
Forum
Contact
Guestbook
Home

LOX-DB - Literature


Promutagenic etheno-DNA adducts in multistage mouse skin carcinogenesis: correlation with lipoxygenase-catalyzed arachidonic acid metabolism.

Nair J, Furstenberger G, Burger F, Marks F, Bartsch H

Chem Res Toxicol 13: 703-709 (2000)

Abstract:

Formation of the lipoxygenase-catalyzed metabolites of arachidonic acid, 8-hydroxyeicosatetraenoic acid (8-HETE) and 12-hydroxyeicosatetraenoic acid (12-HETE), and of the exocyclic DNA adducts 1,N(6)-ethenodeoxyadenosine (epsilondA) and 3, N(4)-ethenodeoxycytidine (epsilondC) was investigated in NMRI mouse skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). In reversible papillomas obtained after 20 weeks of TPA treatment, 15- and 68-fold higher contents of 8-HETE and 12-HETE, respectively, were observed, which were paralleled by 12- and 9-fold increased amounts of epsilondA and epsilondC, respectively. When compared to the level in vehicle-treated control skin, these elevations were statistically significant. In irreversible papillomas harvested 20 weeks after the last TPA treatment, the levels of HETEs and etheno-DNA adducts were found to be slightly reduced, as compared to those in reversible papillomas, but were still increased over control levels in age-matched mice. Comparison of mean group values by simple regression analysis showed a close positive correlation between HETE and etheno-DNA adduct levels. Consistent with the miscoding properties of epsilondA causing mainly A --> T transversions, its increased formation in papillomas could thus contribute to this type of mutation in codon 61 of cHa-ras, shown to be a hallmark of DMBA-initiated and TPA-promoted mouse skin carcinogenesis. Although direct evidence that etheno adducts are derived from lipoxygenase-catalyzed metabolites of arachidonic acid is missing, our results implicate DNA damage by oxidative stress and lipid peroxidation as a cause of genetic instability observed at late stages of tumor promotion in mouse skin carcinogenesis.